FIFTY2

Innovation corner

There is always one more shot to solve the unsolved problem. Tinkering around, entering the unknown and starting over again is our approach to push the boundaries and create next level innovations. Stay tuned for PreonLab updates, new researches, groundbreaking innovation and upcoming events.

November 08, 2021
We are excited to announce the release of PreonLab 5.1. It is packed with features that improve reliability, performance and usability across a wide range of applications. Here are some of the highlights: Snow Solver: The Snow Solver is now up to five times faster when simulating big chunks of snow. Thermodynamics & Boundary Conditions: Improve your simulation results with an enhanced set of boundary conditions that allow for more detailed scene initialization or updates in a co-simulation environment, especially in thermodynamics simulations. Multiphase Simulation: The Preon Solver has been optimized for low- and high-density contrast multiphase simulations. Adaptive Resolution: Better integration with other features opens up adaptive resolution for more applications. Not convinced? There is also a 20% performance boost. Adjustable Units: Meter or millimeter? Seconds or hours? Choose whatever fits best for your current application. This is just a selection of new features and improvements. Check out the changelog to learn about all changes. Please also join us for the upcoming PreonLab 5.1 Release Event to learn more about what‘s going on in the PreonLab ecosystem. There are two options to join the event: November 18, 4pm – 5pm CET November 19, 9am – 10am CET   Register here: https://www.avl.com/-/preonlab-5-1-release Make sure to follow us on LinkedIn so that you don’t miss new videos, case studies and updates!
October 19, 2021
Saba Golshaahi Sumesaraayi and Markus Ihmsen
The Poiseuille flow serves as an important benchmark for the validation of CFD methods as well as for studying fundamental aspects of pressure-induced incompressible internal flows. In this article, capabilities of PreonLab in capturing hydrodynamically fully developed 2-D laminar flows between parallel plates (known as planar Poiseuille flow) are evaluated for different Reynolds numbers.
October 18, 2021
Markus Ihmsen, Jens Cornelis, Jennifer Weiche and Jan Viher
Our R&D team has worked hard to make PreonLab 5.1 real. It is packed with entirely new options for the most prominent simulation challenges solved with PreonLab. New physical models broaden the scope of possible applications. Numerical improvements shorten computation times even further. On top of that, we have thoroughly revised and extended how PreonLab handles statistic data to enhance the usability, once more. Stay tuned for more insights of this release in November 2021 & register to be part of the release event and be one of the firsts to get to know the new and enhanced features!
October 13, 2021
Thomas Rinklin and Jens Cornelis
Reliability is one of the key drivers of our product development at FIFTY2. Users of PreonLab can always be sure, that new versions have been thoroughly tested before we release them. On the other hand, our quality awareness should not slow us down implementing new features. In this article we show how our development process is structured such that we don’t sacrifice one goal for the other. We continuously validate the simulation results and the application behavior. This means, that every new feature is carefully looked at. Our engineering team analyzes the result and validates physical aspects. New development should also not break existing workflows. There are a lot of different aspects of quality assurance, which in combination makes PreonLab an enjoyable user experience. At FIFTY2, we have different stages where different variants of software testing is strictly incorporated in the development process. Like this, we minimize the risk of regressions and side effects and ensure reliable simulation results. It is always our goal to ensure, that the PreonLab version deployed to our users is the best version so far.
September 30, 2021
Fabian Meyer and Marian Majda
Snow creates deeply physical experiences that can remain vivid memories: Seeing snow for the first time, a snow crystal melting on your tongue, a snowball fight, the different activities summarized as winter sports. However, snow also affects human activity and can, quite literally, get in the way. Snowplows clear roads, highways, airfields and railroads. Snow drifts may destabilize structures due to uneven loading. Avalanches and blizzards are natural hazards that can endanger living beings. PreonLab solves many automotive problems. When it comes to snow, one is foremost interested to prevent soiling of critical components. The number of tasks is vast. Some that PreonLab has already solved are: Placing cameras for self-driving cars, snow entering the engine air intake which can cause a power drop or localizing corrosion hot-spots in the wheelhouse. Audi and Great Wall Motor are just some examples demonstrating the snow solver capabilities to simulate and capture phenomenas measured in real world test setups at different vehicle speeds. Out of the many sensors PreonLab provides, the addition of the height sensor has been key for the engineers to assess soiling. So how does PreonLab achieve this? Let’s take a step back and look what we are up against.
September 09, 2021
Aju Abraham and Shreyas Joshi
Each simulation tool/method has its strengths. Often in industrial workflows, multiple tools are combined over an interface to exploit the advantages each tool offers. PreonLab offers a wide range of possibilities to easily couple it with other tools. In this article, we talk over the several coupling interfaces that PreonLab offers, and more specifically a workflow developed for coupling PreonLab to TAITherm using a case of battery cooling simulation.
August 18, 2021
Saba Golshaahi Sumesaraayi and Markus Ihmsen
The lid-driven cavity problem is of high importance in fluid dynamics serving as a benchmark for the validation of CFD methods as well as for studying fundamental aspects of incompressible flows in confined volumes driven by the tangential motion of one or more bounding walls. In this article, capabilities of PreonLab in capturing 2-D flows inside a cavity are evaluated for different Reynolds numbers.
August 12, 2021
Saba Golshaahi Sumesaraayi, Max Flamm and Andreas Henne
With the release of version 5.0, PreonLab saw several additions to it, ranging from new features to under-the-hood developments. They play an important role for wading simulations, which can be broadly classified as follows: Performance & Accuracy: Adaptive simulations with up to 3 particle levels Faster Pressure Solver Usability: Object Grouping Improvements in the Plot Dialog Improvements in the Connection Editor Connect sensor right-click action
July 22, 2021
Loïc Wendling, Jennifer Weiche, Shreyas Joshi and Aju Abraham
Piston Cooling Jets (PCJs) are used in traditional Internal Combustion (IC) engines to remove the excess heat from the piston, allowing for higher thermal loads to be reached. PreonLab 5.0 allows for investigations of the dynamic and thermal interactions between the lubricating oil jet and the moving piston.
July 08, 2021
Jing Tai Tune
For coarsely-resolved simulations, especially those for applications that require numerous quick design iterations to asses the plausibility of a design, a simulation that both runs quickly and delivers results in the correct ballpark is needed. The coarse resolution allows for fast computation, but such simulations tend to suffer from gradient underprediction at the walls. This happens in particular for flow regimes which may be considered as turbulent, where the steep gradients at the wall mean that a very fine resolution is required to correctly reproduce them. With the effect of wall-bounded phenomena (e.g. wall shear stress, wall heat flux) being a key result for studies that such simulations are used for, it is clear that there is potential for improvement here.